Introduction

The purpose of this research is to identify the internal spatial arrangement of structures, features, and activities at the studied site (311Yd27). A Late Prehistoric Village Traditions (VPVT) settlement in the upper Yadkin River Valley (UYRV) (Figure 1). To research other VPVT sites, this goal has been hampered by preservation conditions. Thus, this particular site, with its good preservation, is critical to our understanding of intrasite spatial patterning in the UYRV and for comparisons to other VPVT settlements across the piedmont. To accomplish our goal, we (1) spatially analyze postmold patterns based on several morphological characteristics (2) compare the spatial distributions and postmold architecture within and between features to estimate settlement duration. Comparisons to other sites in the UYRV help to contextualize our findings.

Background

During AD 1200–1450, the UYRV was inhabited by communities living in small semi-subterranean villages. Ethnohistorical, osteological, and ecological research along with historic accounts suggest that people practiced a mixed subsistence strategy of foraging and extensive farming (James et al. 2012; Kowalewski 1987; Kopfell 1965; Shobi 1963). Surface artifact patterns suggest settlement structures varied from 25–50 ac in area, with most on the smaller scale (James et al. 2012; Woodall 1990). The internal arrangement of structures and their morphological characteristics are still somewhat of a mystery likely due to poor postmold preservation in the floodplain environments.

Methods

To compare the postmold patterns from this site to other studies, we evaluated the methodology suggested for the study of postmolds by French and Schmidt (1980). In this study, postmolds are defined as any earth-fast or nearly earth-fast rectangular or sub-rectangular structure (Figure 2). In this study, we defined postmolds as any earth-fast or almost earth-fast rectangular or sub-rectangular structures.

Exposing Feature B2 (Figure 3) to identify if it is a housefloor or an activity area.

Discussion and Conclusions

The diversity of artifact types across and within features appears to show that they had multiple functions. Although most Archaic work is needed, this result suggests this site was occupied for longer durations of time with more emphasis on resource exploitation and from site contexts. We then created a single postmold assemblage with an associated database. Based on observations made in the lab we suggested the following postmold characteristics included in this analysis:

• Opposite angled postmolds to look for possible hearth-like structures

• Vertical postmold (angle between 90 and 100 degrees) for vertical wall posts

• Postmolds greater than 5 in depth for possible load-bearing posts

• Postmolds greater than 7 in depth for possible load-bearing posts

All artifact types were used to infer other sites in the UYRV with similar surface and subsurface features. These results are very preliminary. The following work will be done in upcoming study sessions:

1. Detailed analysis of the diversity of artifacts between and within sites to determine the degree of utilization

2. Detailed analysis of different artifact types to identify the activities associated with the postmold features

3. Detailed excavation in Block C to explore postmold activities

Figure 1: Location of the Study Area in the Upper Yadkin River Valley

Figure 2: Site Plan of the Study Area

Figure 3: Location of the Study Area in the Upper Yadkin River Valley

Figure 4: Profiles of typical shapes of intrasite circular structures. Because of the small and variable shape, we interpret them as postmolds.

Figure 5: Style B, Type 1, and Type 2 Postmolds

Figure 6: Location of opposite aligned postmolds

Figure 7: Location of opposite aligned postmolds

Figure 8: Location of the Study Area in the Upper Yadkin River Valley

Figure 9: Location of the Study Area in the Upper Yadkin River Valley

Figure 10: Location of the Study Area in the Upper Yadkin River Valley

Figure 11: Location of the Study Area in the Upper Yadkin River Valley

Figure 12: Location of the Study Area in the Upper Yadkin River Valley

Figure 13: Location of the Study Area in the Upper Yadkin River Valley

Figure 14: Location of the Study Area in the Upper Yadkin River Valley

Finally, Table 1 shows the artifacts found in the excavated features in Block II. There is considerable diversity between pits and tuna individual pits based in Block C. The diversity of artifact types suggests multiple functions, which are not well understood yet.

Table 1: Diversity of artifacts across and within excavated features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Artifacts</th>
<th>Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Flakes</td>
<td>104</td>
</tr>
<tr>
<td>B1</td>
<td>Bone</td>
<td>58</td>
</tr>
<tr>
<td>B1</td>
<td>Seeds</td>
<td>88</td>
</tr>
<tr>
<td>B2</td>
<td>Flakes</td>
<td>129</td>
</tr>
<tr>
<td>B2</td>
<td>Bone</td>
<td>64</td>
</tr>
<tr>
<td>B2</td>
<td>Seeds</td>
<td>93</td>
</tr>
</tbody>
</table>

The larger postmolds are Block C and an associated activity area. Black C is an accessible area associated with the Black C activity area. Black B is an accessible area associated with Block C activity area. Black A is an accessible area associated with the Black B activity area. The results suggest the diversity of artifact types across and within features appears to show that they had multiple functions. Although most Archaic work is needed, this result suggests this site was occupied for longer durations of time with more emphasis on resource exploitation and from site contexts. We then created a single postmold assemblage with an associated database. Based on observations made in the lab we suggested the following postmold characteristics included in this analysis:

• Opposite angled postmolds to look for possible hearth-like structures

• Vertical postmold (angle between 90 and 100 degrees) for vertical wall posts

• Postmolds greater than 5 in depth for possible load-bearing posts

• Postmolds greater than 7 in depth for possible load-bearing posts

All artifact types were used to infer other sites in the UYRV with similar surface and subsurface features. These results are very preliminary. The following work will be done in upcoming study sessions:

1. Detailed analysis of the diversity of artifacts between and within sites to determine the degree of utilization

2. Detailed analysis of different artifact types to identify the activities associated with the postmold features

3. Detailed excavation in Block C to explore postmold activities

4. Improve feature ID to identify if it is a housefloor or activity area

Discussion and Conclusions

The diversity of artifact types across and within features appears to show that they had multiple functions. Although most Archaic work is needed, this result suggests this site was occupied for longer durations of time with more emphasis on resource exploitation and from site contexts. We then created a single postmold assemblage with an associated database. Based on observations made in the lab we suggested the following postmold characteristics included in this analysis:

• Opposite angled postmolds to look for possible hearth-like structures

• Vertical postmold (angle between 90 and 100 degrees) for vertical wall posts

• Postmolds greater than 5 in depth for possible load-bearing posts

• Postmolds greater than 7 in depth for possible load-bearing posts

All artifact types were used to infer other sites in the UYRV with similar surface and subsurface features. These results are very preliminary. The following work will be done in upcoming study sessions:

1. Detailed analysis of the diversity of artifacts between and within sites to determine the degree of utilization

2. Detailed analysis of different artifact types to identify the activities associated with the postmold features

3. Detailed excavation in Block C to explore postmold activities

4. Improve feature ID to identify if it is a housefloor or activity area

When we compared postmold clusters to artifacts recovered from the plowzone, several patterns emerge, as seen in Figures 10–15.