The use of curvature is based on Andrefsky's (1986) replication study of generalized triangular points. Here, we replicate Andrefsky's (1986) formula. We are examining a new area of the site and comparing flake characteristics there to an existing model of gateway points. This study explores the lithic economy of Late Woodland Piedmont Village Tradition communities in the upper Yadkin Valley.

Methods

Andrefsky (1986) examination of the Redtail 2 site from 2015-16 produced over 4,000 replicate objects, 1,080 in a single excavation unit. Over 300 of these objects were flint, and the remainder were stone. We choose to focus on flint because of the diversity and number of points found in the site. Points are classified into four categories based on Andrefsky's (1986) graph of flake curvatures showing distances between loci. We employed this method to compare our data to Andrefsky's results.

Background

Andrefsky's (1986) replication study showed flake curvatures to be useful as a measure of reduction stage. However, Andrefsky's study was not meant as a replication. It is apparent to us that a replication that could explore variation and standard error would likely yield a different model. We choose to use the fourth stage to compare our results to Andrefsky's results. The high degree of Andrefsky's generalization to the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends. The curvature profile of Redtail 2 looks similar to 3 of the 4 replicated point assemblages and the total replicated flake assemblage. The one exception is the fourth stage shows much less variation and angles around or above 170º. Points 5 and 6, however, show none of those same trends.

Results

Redtail 2 Assemblage and Comparison to Replicated Point Assemblages

The 130 flake assemblages from Redtail 2, the control assemblage was constructed from Andrefsky’s second quarter of replicates. Of the 130 flake assemblages from Redtail 2, we selected 10 out of the second quarter (50) of our assemblages, for a total of 37. In the two studies, we compared the average flake size and number of flakes to Andrefsky's assemblages, hypothesizing that slightly later stages of reduction occurred in our compare to the control assemblage.

We constructed Andrefsky’s chief of flake extraction from fourth stage Redtail 1, 2, and 3. U1 and U2 are control units on the Upper Yadkin. Redtail 2, which is a site in the Midwest, is a control unit on the Upper Yadkin. Redtail 2, which is a site in the Midwest, is a control unit on the Upper Yadkin. Redtail 2, which is a site in the Midwest, is a control unit on the Upper Yadkin. Redtail 2, which is a site in the Midwest, is a control unit on the Upper Yadkin. Redtail 2, which is a site in the Midwest, is a control unit on the Upper Yadkin.

Conclusions

We are still confident that Andrefsky's assemblages reflect the results of the large program using makers as diachronically changing morphological characteristics. We believe that future work that focuses on the use of more replicate observations could yield significant results. We are still confident that Andrefsky's assemblages reflect the results of the large program using makers as diachronically changing morphological characteristics. We believe that future work that focuses on the use of more replicate observations could yield significant results. We are still confident that Andrefsky's assemblages reflect the results of the large program using makers as diachronically changing morphological characteristics. We believe that future work that focuses on the use of more replicate observations could yield significant results. We are still confident that Andrefsky's assemblages reflect the results of the large program using makers as diachronically changing morphological characteristics. We believe that future work that focuses on the use of more replicate observations could yield significant results.

Discussion

Our study attempts to explain a replication process (see above for this), but does not mean Andrefsky's study does not apply to modern datasets. Our analysis of Andrefsky's assemblages shows that the curvature of Redtail 1 started slightly to the left of the replicate process. We can see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site. For the Andrefsky results, we see some deviations in the core within our site.